35,003 research outputs found

    H-Alpha and Hard X-Ray Observations of a Two-Ribbon Flare Associated with a Filament Eruption

    Full text link
    We perform a multi-wavelength study of a two-ribbon flare on 2002 September 29 and its associated filament eruption, observed simultaneously in the H-alpha line by a ground-based imaging spectrograph and in hard X-rays by RHESSI. The flare ribbons contain several H-alpha bright kernels that show different evolutional behaviors. In particular, we find two kernels that may be the footpoints of a loop. A single hard X-ray source appears to cover these two kernels and to move across the magnetic neutral line. We explain this as a result of the merging of two footpoint sources that show gradually asymmetric emission owing to an asymmetric magnetic topology of the newly reconnected loops. In one of the H-alpha kernels, we detect a continuum enhancement at the visible wavelength. By checking its spatial and temporal relationship with the hard X-ray emission, we ascribe it as being caused by electron beam precipitation. In addition, we derive the line-of-sight velocity of the filament plasma based on the Doppler shift of the filament-caused absorption in the H-alpha blue wing. The filament shows rapid acceleration during the impulsive phase. These observational features are in principal consistent with the general scenario of the canonical two-ribbon flare model.Comment: 15 pages, 5 figures, accepted for publication in Ap

    Hot Spots on the Fermi Surface of Bi2212: Stripes versus Superstructure

    Full text link
    In a recent paper Saini et al. have reported evidence for a pseudogap around (pi,0) at room temperature in the optimally doped superconductor Bi2212. This result is in contradiction with previous ARPES measurements. Furthermore they observed at certain points on the Fermi surface hot spots of high spectral intensity which they relate to the existence of stripes in the CuO planes. They also claim to have identified a new electronic band along Gamma-M1 whose one dimensional character provides further evidence for stripes. We demonstrate in this Comment that all the measured features can be simply understood by correctly considering the superstructure (umklapp) and shadow bands which occur in Bi2212.Comment: 1 page, revtex, 1 encapsulated postscript figure (color

    NMR Study of the New Magnetic Superconductor CaK(Fe$0.951Ni0.049)4As4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity

    Get PDF
    Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75^{75}As nuclear magnetic resonance study on single-crystalline CaK(Fe0.951_{0.951}Ni0.049_{0.049})4_4As4_4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the cc axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature TNT_{\rm N} ∼\sim 52 K. The nuclear spin-lattice relaxation rate 1/T1T_1 shows a distinct decrease below TcT_{\rm c} ∼\sim 10 K, providing also unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T1T_1 data, the hedgehog SVC-type spin correlations are found to be enhanced below TT ∼\sim 150 K in the paramagnetic state. These results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. B rapid communicatio

    Precise QCD predictions on top quark pair production mediated by massive color octet vector boson at hadron colliders

    Full text link
    We present a theoretical framework for systematically calculating next-to-leading order (NLO) QCD effects to various experimental observables in models with massive COVB in a model independent way at hadron colliders. Specifically, we show the numerical results for the NLO QCD corrections to total cross sections, invariant mass distribution and AFB of top quark pairs production mediated by a massive COVB in both the fixed scale (top quark mass) scheme and the dynamical scale (top pair invariant mass) scheme. Our results show that the NLO QCD calculations in the dynamical scale scheme is more reasonable than the fixed scheme and the naive estimate of the NLO effects by simple rescaling of the LO results with the SM NLO K-factor is not appropriate.Comment: 6 pages, 5 figures, 2 tables; version published in EPJ

    Cusp-scaling behavior in fractal dimension of chaotic scattering

    Full text link
    A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.Comment: 4 pages, 4 figures, Revte
    • …
    corecore